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The quasiclassical limit of the modified KP hierarchy 

B A Kupershmidt 
The University of Tennessee Space Institute, Tullahoma, TN 37388, USA and School of 
Mathematics, The Institute for Advanced Study, Princeton, NJ 08540, USA 

Received 30 August 1989 

Abstract. In the quasiclassical limit, the M K P  hierarchy and its Lax representation turn 
into a modified Benney hierarchy and its Poisson representation. A Miura map is construc- 
ted, and shown to be canonical, from the modified Benney hierarchy into the unmodified 
one. The modified hierarchy is given both hydrodynamical and kinetic representations, 
and the Miura map is given a kinetic form. Explicit combinatorial formulae are proved 
for the infinite number of conserved densities of the modified Benney hierarchy. 

1. Introduction 

The K P  hierarchy [ l ]  has the form 

2,, = [8+, 3 1  = [2, 9-1 
where 

cc 

9 = &+  A,&-'-' (1 .2)  
I = O  

is a Lax operator with the coefficients A, = A,(x ,  t ) ;  8 runs over the Q-generators of 
positive &degree of the centraliser Z ( 2 )  of 2 in the associative ring of (algebraic) 
pseudodifferential operators ( PDO) on the line: 

9=zm m E N ,  (1 .3)  
The commutator [ , 3 is taken in this ring with respect to the associative multiplication 
[21 

a := alax. 

Finally, the + and - notation in formula (1.1) is defined by the rule: if Q = X I  q,&' 
is a PDO then 

The three most basic properties of the K P  hierarchy (1.1) are as follows. All the flows, 
for various 9, (i)  commute between themselves; (ii) have a common infinite set of 
conserved densities [ 13 
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where 

Res qrt' := q- l  0 (1 .7 )  

and (iii) are Hamiltonian, with the Hamiltonian matrix B associated with the Lie 
algebra O,Diff of left-differential operators (DO) on the line: 

B := os = B(,,Diff) (1.8) 

osDiff := d"g, g, E K 
{ n z o  I } 

where K is the basic differential Q-algebra with a derivation a (which can be thought 
of as K = CsR', a = a / a x )  [3]. In the coordinates Ai, the matrix 8 has the matrix 
elements 

(1.10) 

If we now take the quasiclassical limit of the K P  hierarchy, i.e. change a into E a  in 
formula (1.4) and retain everywhere only the first order in E terms, then from formula 
(1.4) we see that the commutator [ , ] in the ring of PDO turns into the Poisson bracket 

( 1 . 1 1 )  

so that the Lax form ( 1 . 1 )  becomes 

Y,1= { P+ ,a = { Y,  P-1 (1.12) 

and the three basic properties of the K P  hierarchy become the corresponding three 
basic properties of the resulting so-called Benney hierarchy [4], with the Hamiltonian 
matrix B (1.10) being replaced by its quasiclassical limit [5,6] 

B,, =a,A,-,-'+ iA!+,-la. (1 .13 )  

The first non-trivial term in the Benney hierarchy (1.12), for 9 = -sP2/2, has the form 

A,., = A , + i , ,  + iA,-iAo,r. (1.14) 

This is the famous Benney system proper [7] and it results from two different physical 
systems. The first one describes long surface waves on a shallow fluid [7]: 

U,r=UU,,+h.r-u,, J; dyu , ,  - o o < x < c o , u = u ( x , y , t )  ( 1 . 1 5 0 )  

h,l  = ( JOh dy  U )  O s y ~  h, h = h(x, 1 ) .  (1 .15b)  
.1; 

The moments 

r h  

A , : =  J d y u '  
0 

(1.16) 
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then satisfy the system (1 -14). The second one [8] describes evolution of the one-particle 
distribution function F (  x, p, t )  of a collisionless one-dimensional gas: 

The moments, defined now as 

A : = /  d p p ' F  
X 

--T 

(1.17) 

(1.18) 

then satisfy the same evolution system (1.14). The higher Benney flows (1.12) also 
have both hydrodynamic (1.16) [6] and kinetic (1.18) [9] representations, and this 
double representation property is available for any Hamiltonian system with the 
Hamiltonian matrix (1.13). 

The modified K P  ( M K P )  hierarchy has the form [3] 

L, ,  = [ ( ( P L ) + ,  LI = [ L ,  ( ( P + ) J I  (1.19) 

where 

X 

L = [ +  a , [ - '  a, = a , (x ,  t ) .  
, = o  

( 1.20) 

P runs over the Q-generators of positive &degree of the centraliser Z (  L )  of L in the 
ring of PDO: 

P =  L" m E N .  (1.21) 

't' stands for 'adjoint': 

and if Q = Z, qr[' is a PDO then 

and similar conventions apply for the notations Q C y ,  Q > v  and Q z v .  The M K P  hierarchy 
also has 'the three most basic properties': all its flows (i) commute between themselves; 
(ii) have an infinite common set of conserved densities {Res( P)I P E Z( L ) } ;  and ( i i i )  
are Hamiltonian, with the Hamiltonian matrix B being the direct sum of the matrix 

( 1.24) 

for the variables a, and a , ,  and the matrix 
algebra of left DO of order 3 1 ,  for the remaining variables { w ,  := al+21i EZ,}: 

= B(,,Diff) associated with the Lie 

n 1 (1.25) 

(1.26) 
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The name 'modified KP' of the hierarchy (1.19) reflects the existence of the following 
Miura map [3] which sends the Lax representation of the M K P  system ((1.19) and 
(1.21)) into the Lax representation of the K P  system ( (1 .1)  and (1 .3)):  

= 9 = exp( I a, dx)  L exp( - 1 a, dx) 

so that 

=exp( a,dx)([+ 1=0 5 uI5-') exp( -I a,dx)  ( 1 . 2 7 ~ )  

(1.27b) 

( I  .28) 

where 

Qn (- 0 0 )  := ( a  - a,) ( 1 ). ( 1.29) 

Taking the quasiclassical limit of the m K P  hierarchy (1.19) we arrive at what can 

L,,={P,1, L ) = { L ,  Ps,} (1.30) 

which is the subject of this paper. The main issue are as follows. 
(i)  The conjugation L +  exp(j  a, dx)L exp( - j  a, dx)  ( 1 . 2 7 ~ )  no longer makes sense 

in the quasiclassical setup, while the formal shift of 5 by -ao (1.27b) still does. Next 
section 2 is devoted to a proof that this shift maps the modified Benney hierarchy 
(1.30) into the Benney hierarchy (1.12). 

(ii) The Miura map (1.28) is conjectured in [3] to be a canonical map between the 
Hamiltonian structure 6 ( (  1.24)@( 1.25)) of the M K P  hierarchy and the Hamiltonian 
structure B (1.10) of the K P  hierarchy. This conjecture is still unproven. In section 3 
it will be shown that the quasiclassical version of this conjecture is true: the quasi- 
classical limit of the Miura map (1.28) 

be called the 'modified Benney hierarchy': 

is a canonical map between the Hamiltonian structures 

(1.31) 

(1.32) 

( 1 B )  rJ := J ( j  + 1 W, 7, + ( i + 1 ) w,+,a (1.33) 

( i i i )  The first non-trivial flow of the modified Benney hierarchy (1.30), with P =  

q, = a,,,,, + a0a,, + ia,a,,, i E Z , .  (1.34) 

and B (1.13). 

L2/2, has the form 
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It is easy to check that this system has both the hydrodynamical representation 

which generates (1.34) via the map 
K 

a, = [ d y u '  i E Z ,  
0 

and the kinetic representation: 

o s y s  E, E =  6 ( x ,  t )  

(1 .35a)  

(1.35b) 

(1.36) 

(1.37) 

which generates (1.34) via the map 

i c Z + .  (1.38) 

In section 4 we show that every flow in the modified Benney hierarchy has such a 
double representation. 

(iv) In section 5 we show that there exists a Miura map between the kinetic equations 
= . . . and F,, = . . . which correspond to modified and unmodified Benney flows, such 

that the lift (1.38) and (1.18) of this map into the spaces of the moments a, and A, is 
given precisely by the Miura map (1.31). In fact, this kinetic Miura map is 

(v) Section 6 is devoted to explicit combinatorial formulae for the conserved 
densities {Res( L " ) ( m  E N} of the modified Benney hierarchy. 

2. The Miura map 

For the duration of this section we consider a slightly more general form of L and 2. 
Let 

Consider the equations 

where 
P = L " f M = g m +  . . .  

and the Poisson bracket { , }  is the usual one on T*(W') ( 1 . 1 1 ) .  Denote 

(2.4) 
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Since 

ord({X, Y}) S ord(X)  + ord( Y) - 1 

from the second equality in (2.2) we see that 

ord(L,,) = ord({L, Pso}) 6 M + O  - 1 = M + 1 .  

Hence the motion equations (2.2) make sense. Finally, since P = Lm'M and { e ,  a }  is 
a derivation with respect to each argument, we have 

0 = {P, L }  = {PPI + P=o, L}  = {Pa,,  L }  - { L ,  Pso}. 

This shows that the second equality in (2.2) follows from the first one. In particular, 

ao,, = g M - '  -coefficient in L, ,  = Res(L,, t-M) (by (2.2)) 

=Res({& P G o } t - M )  = Res({t', Res(Pt- ')}5-M) 

= Ma[ Res( Pt - I ) ] .  

Denote 

(2.5) 

Va:= K [ a ; " ]  i , j E Z +  (2.6) 

and let us make Vo into a differential Q-algebra with a derivation a by letting d act 
on the polynomial generators of Va by the rule 

a(a;" )  := ay+''. (2.7) 

Pick 

p E C"(R') (2.8) 

and let 

cp: cy T* (R ' ) )  + C"( T*(R')) (2.9) 

be the transformation 

cp(x) = x P ( 5 )  = 5+ P(X). 

Since 

c p ( d t ~ d x ) = d t ~ d x  

cp is a canonical transformation. Hence 

cp({X, Y}) = {cp(X), cp( Y ) } .  

Since the equality (2.11) can be viewed as based on the commutation relations 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

and these relations remain true when one considers p E g o ,  and %',(([-')) instead of 
C"( T*(R')), formula (2.1 1 )  remains true in these extended circumstances. 
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Theorem 2.1. Let 

1 
M 

p = --a,,. 

Then 
( a )  the motion equations (2.2) imply the motion equations 

[cp(L)I,, = {cp(PPI)+Res(PS-'), cp(L)} 

= {cp(L) ,  c p ( P d  - R e s ( K ' ) }  

( b )  if P = L"M then, in formulae (2.15), 

cp(P,,)+Res(P(-') = ([cp(L)l""")+ 

cp(Pso)-Res(P(-') = ([cp(L)"""])- 

Remark 2.2. We have 

c p ( ~ )  = (p(tM + aoSM- '  + . . . ) = (5 + p )  + a,(( + p 

= S M  + Mt'-'p + . . , + + 

Hence, we can identify 

Then formulae (2.15)-(2.17) imply that 

Y,, = { P+ , Y }  = {2, E} 

gl= y / M .  

with 

M - 1 +. . . 
. . .  (by ( 2 . 1 4 ) = ( " + 0 ~ ( ~ - ' +  . .  

877 

(2.14) 

(2.1 Sa) 

(2.156) 

(2.16) 

(2.17) 

* .  
(2.18) 

(2.19) 

(2.20) 

(2.21) 

Thus, the Miura map cp (2.19) sends the modified system ((2.2) and (2.3)) into the 
unmodified one (2.20) and (2.21)). 

Proof of theorem 2.1. ( a )  Suppose 

L,f = IS, Ll (2.22) 

with some S E  % , ( ( [ - I ) ) .  Considering p as an element in go, we have 

(2.23) 

Thence 
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From formula (2.2) we see that S is P,, or  - P G o ,  and formula (2.24) then yields both 
formulae (2.15). 

( b )  Since, by (2.4) and  (2.10), 

cp 0 ord = ord 0 cp, (2.25) 

we have, for S = -PGo in (2.24), 

ord[ -cp( Ps0) + Res( Pt-‘)] s -1 ( 2 . 2 6 ~ )  

while for S = P Z I ,  

ord[cp(P,,)+Res(Pt-’)] a 0 .  (2.26b) 

Also 

[ cp ( P, I ) + Res( Pt-’ )] - [ - cp ( P,,J + Res( P6-I 13 
= cp(PZl)+cp(PS0) =cp(P,,+P,,)=cp(P)=cp(L”M)=[cp(L)lm’h’. 

Hence, by (2.26), 

-cp(Pso) +Res(PS-’) = -([cp(L)]”’”)L 

cp(P,,)+Res(Pt-’) = ([cp(L)l”’”)+ 

as required. 

3. The Miura map is canonical 

Let 

(eA = K [ A ; ” ]  i , j e Z +  (3.1) 

be the differential Q-algebra generated by the A , .  Let @(eA-,  Vu be the differential 
homomorphism over K corresponding to the Miura map (1.31): 

Theorem 3.1. The map CP is canonical between the Hamiltonian structures B (1.13) in 
VA and b (1.32) in gU. 

Prooj Denote by D(@)  the Frichet derivative of CP:  

The canonical property of the map CP is equivalent to the identity [lo]: 

D(@)bD(@)-=CP(B) (3.4) 

which we shall proceed to prove. 
Since 

j + n  
n (3.5) 
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the map @ (3.2) can be rewritten as 

where 

wi := U i + l  iEZ,.  

Hence, the matrix elements of the matrix D ( @ )  (3.3) are 

Therefore, by formula (1.32), the matrix elements of the matrix D(@)b are 

@ ( A k )  - a0 a la  

By formula (3.8), the matrix elements of the matrix D(@)’ are 

Hence, the @ ( A k ) - @ ( A , )  matrix element of the matrix D(@)BD(@)’ on the LHS of 
formula (3.4) is 

( 3 . 1 1 ~ )  

(3.11b) 
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On the RHS of formula (3.4), the Ak -A ,  matrix element is, by formulae (1.13) and  (3.6), 

@ ( k& + s - 1 a + asAk+.y - i ) 

( 3 . 1 2 ~ )  

(3.126) 

We have to show that (3.11) = (3.12). We start with the terms involving a,: these 
are the first summands in (3.11a, b )  and in (3.12a, b). Multiplying these terms, from 
the left by a i k ,  and from the right by a,", we get the following identity to verify: 

(3.13) dsai 'a ,  + kai 'a ,d  = k u i ' u l ( u ~ d u i s )  + (a ikda$)sa, 'a ,  

which is obviously true since 

k(~;da, ' )  = k d -  k s a i ' a f '  ( a i k d a $ ) s  = sa+ ksa"ab". (3.14) 
The remaining terms are all linear in the w. Picking out all the terms containing w := w,, 
for a fixed y E Z+, and multiplying each of these terms by a,k from the left, and  by 
a t s  from the right, we arrive at the following identity to verify: 

(3.15L) 

(3.15R) 

Our  strategy in checking the operator identity (3.15) is, first, to collect terms linear in 
w"); the remaining terms are proportional from the left to w, so that we can get rid 
of w. Afterwards, we repeat the separation procedure with the remaining a,. So, terms 
proportional to w") amount to the identity 

Y + l  
(3.16) 

which, after being divided by becomes 

. (3.17) 

To prove formula (3.17), we first transform the sum on the LHS: 

= a + p  c = * + 2  (3(;)L3-(y:2)(y+2) 
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so that (3.17) becomes 

This identity follows from the formulae 

( ' ) ( s - n ) = (  n n i l  ) ( n + l )  

( 3 . 1 8 ~ )  

(3.186) 

(3.19) 

(3.20) 

Let us start with (3.19). It is true for s = n, and for n > 0. For s > n > 0 

S !  S !  
( s - n ) =  

n ! ( s  - n ) !  n ! ( s - n  - l ) !  (;) ( s  - n )  = 

= ( n + l )  S !  = ( n + l ) (  n + l  ) ( n +  l ) ! ( s  - n  - l ) !  

as required. The identity (3.20) results from picking out the Z" coefficients in the identity 

s z ( l +  Z ) c + k - '  = (1  + Z ) 5 Z (  1 + z)s-'  

d 
dz 

= (1 + z)"-[(l + z ) ' ]  

= 0 , P  c (:)fZ; [ ( ; i ) Z P ]  

= c ( k s  ) ( P ) w a + P .  

0.0 ff 

Thus, we can drop off the w terms from the identity (3.15). The remaining identity to 
be verified is 

a( r:l))(s - 1 -r)ai'-'+ ( y ~ l ) ( k - l - Y ) a : - ' d  

+ T, ( j s  1) ( i + i + 2 ) a i l - ' a a i l - J  (3.21L) 

(3.2 1 R) = (';:; 1)(ka,2-'a+dsa~2-y).  

Picking out the a ; 3 - Y a r '  terms in formula (3.21) we get 

( 1 l)(s - 1 - Y)(-2 - Y) + , + , = y  c ( : 1) ( j ; 1) (Y + 2)(-1 - j )  = ( kty:; ') 4 - 2 -  Y) 
(3.22) 
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which is (-2 - y )  times the identity (3.17). Finally, the remaining ao-free terms in 
formula (3.21) amount to 

= (':'T ')( k +  s). 

This is the identity (3.17) added to (itself, with the indices 
interchanged). 

k and s) and 

(3.23) 

i and j )  

Remark 3.2. The map (0 thus sends any system of Hamiltonians in %A commuting 
with respect to the Hamiltonian structure B (1.13) into a system of Hamiltonians in 
(e, commuting with respect to the Hamiltonian structure b (1.32). ( A  large number 
of commuting systems in (eA is given in [ l l ] . )  

4. Hydrodynamical and kinetic representations 

In this section we show that each modified Benney Bow (1.30) has both a hydrodynami- 
cal and a kinetic representation. 

First we rewrite the motion equations (1.30) in the Q language. Set 

L" =c qdm)t ' .  (4.1) 

Then 
cc 

L,r = c a,,,t-' = { L  P%O} = {L ,  P,ol,o 
, = O  

= { P 3 * ,  L),o={P,I, L,ol,o 

= ( r 3 l  c / = o  c t'-'-'[rqr(m)aI,, + j q ~ m ) , ~ a ~ ~ )  -0 

so that, suppressing m from the notation q r ( m ) ,  we obtain 

a, 

Next, recall 

a, 

( 4 . 2 ~ )  

(4.2b) 

(4.3) 

with RI, Q,, P, E % a ,  are lifted from the hydrodynamical-type systems 

U,,= C [P ,uJu , ,+R juJ -u , ,  ~ . Y ( P , ( u ' ) , ~ + Q J u ~ ) ]  (4.4a) 

6,r = c [P,a,.,+Q,a,I (4.46) 

, 3 O  

J'O 
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via the moment map 

(4.5) 

Also, systems of the form (4.3) and (4.4) form Lie algebras, and the map (4.5) is an 
isomorphism of these Lie algebras. It follows that all the hydrodynamical systems 
producing the modified Benney flows commute between themselves since so do the 
lifted modified Benney flows in the moment space (the first ‘basic property’); from 
formulae (4.3) and (4.4) we see that our system (4.2b) is of the type (4.3) with 

Ro=O R , + , =  q,-1,.; 0, P, = ( j +  l)q,+l (4.6) 

so that the corresponding fluid system is 

(4.76) 

In particular, for P = L2/2, we have P,, = is2+ a,& so that q2 = t ,  q1 = a,, and the 
system (4.7) becomes the system (1 .35) .  

The situation with kinetic representations is similar. Systems of the form [ 131 

I U,, = c ( q , + I U ’ T I ) , r - - ) , ,  1: dy[(j+l)q,+l(u’) , ,+jq,+l , ,u’~ 

c,,= C [(j+l)q,+la,,,+jq,,l,,a,I. 

(4.7a) 
1 3 0  { 
/ S O  

where now the a, are understood as 

i e Z +  
-X 

(4.9) 

form a Lie algebra, and the moment map (4.9) is an isomorphism of Lie algebras 
taking the system (4.8) into the system (4.3). Again, the kinetic flows corresponding 
to the modified Benney equations (4.2b) commute between themselves and have, by 
formula (4.6), the form 

(4.10) A, = C [ ( j +  l ) q , + d A y  - q , + , , ~ ( ~ ’ - ~ ’ f ) , ~ + j q , + I , ~ ~ ’ f I .  
I”0 

Remark 4.1. In contrast to the unmodified case, neither of the systems (4.7) or (4.10) 
is Hamiltonian; equivalently, general Hamiltonian systems with the Hamiltonian struc- 
ture b (1.32) cannot be lifted from a hydrodynamical or a kinetic system (since they 
are not of the form (4.3)).  There remains a possibility that the second Hamiltonian 
structure of the modified Benney hierarchy, whose existence follows from the last 
remark in [12], produces flows of the hydrodynamical form (4.3), but this is difficult 
to establish. 

5. Kinetic Miura map 

In this section we prove formula (1.39). 

Theorem 5.1. The map 
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implies the map 

for 

Prooj We have 
X 

A , = [  d p p ' F  (by (5.2) 
--x 

X 

dPP'(P - ao)f(x, P - a,) (changing p into p + ao) 

(5.2) 

( 5 . 5 )  

Remark 5.2. There exists no simple map {u(x,y), K(x)}-{u(x, y),  h(x)} which lifts 
up  to the Miura map (5 .2 )  in the moment spaces through the hydrodynamical lift 

A, = jOh dy u i  

a, = Io' dy v i  

i e Z +  

i E Z + .  

Remark 5.3. The full Miura map (1.28), before the quasiclassical limit is taken, can 
also be lifted from a single kinetic map whose quasiclassical limit is the map (5.2). 

6. Combinatorial formulae 

In this section we derive explicit formulae for the conserved densities of the modified 
Benney hierarchy. 

Set 

1 
m 

H, := - Res(L") m E N  
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and 

Res({., . } ) - O  

and since 

a0.1 - 0 

by formula ( 2 . 5 ) ,  we have 

HSJ - 0 VSEZ,. 

Theorem 6.1. The polynomials 

H m  E Q [ a o , .  . . ,  a m 1  m E N ,  

are uniquely defined by the formulae 

( m  - 1 ) '  k 

m + 1 ,  C ( i e + l )  
a=1 

where S ( U ,  9 + ) := 6; ' is the Kronecker delta. 

Proof: Since 

[Res(L")](,,,= Res(6") = O  V m E N  

the uniqueness of the H,,, follows from formulae (6.5). 
Next 

so that 

m ( m  - 1 )  . , . ( m  - k +  1) 
m 

[Res( Lm-kS-z '=) ]  

) -- - ( m  - I ) !  Res( ,$"-k-z'a) = - ( m - l ) !  Res( g m - W I n + l  1 
( m - k ) !  ( m  - k ) !  

( m - l ) !  
( m  - k ) !  

-- - S ( m + l , X ( i a + l ) )  

as required. 

Remark 6.2. Formulae (6.5) show that 

H m  E Z [ ~ O , .  . ., am1 

and that 

H ,  E a, + Z[ a,, . . . , a, - ,I .  
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